Independente de ser utilizado como processador ou para armazenagem de dados, os chips de silício são cada vez mais onipresentes no dia a dia das pessoas. Desde seu celular até seu computador – passando por iPod, pendrive e câmera digital – todos esses aparelhos utilizam pelo menos um chip de silício.
Apesar de diferenças estruturais significativas, a produção de chips para processamento de dados ou armazenagem de informação é muito semelhante. Ambos os produtos surgem de wafers (bolachas, em tradução direta) de silício tratadas com pigmentos, esculpidas quimicamente e recortadas ao final do processo.
A fantástica fábrica de wafers
No começo de fevereiro de 2010 a IM Flash Technologies – joint venture da Intel e da Micron Technologies – abriu as portas da sua fábrica em Lehi, Utah, para diversos membros da imprensa.A IMFT Lehi é uma fábrica exclusivamente dedicada à produção de memória NAND Flash, mas como o processo produtivo de wafers não difere muito, o local servirá de exemplo neste artigo.

Tecnologia além do chip
O prédio da fábrica é um show à parte. Toda a estrutura é mantida nos pilares dos andares mais baixos, e nenhuma parede interna do andar ocupado – Cleanroom “Ballroom Fab” na imagem abaixo - suporta carga, servindo apenas como divisórias de ambientes.
Um ponto importante – e bastante interessante – do processo de fabricação é que, em nenhum momento, os operários entram em contato direto com os wafers de silício. Mesmo assim as normas de operação exigem que os funcionários utilizem máscaras completas – deixando apenas os olhos descobertos – e roupas especiais para evitar a contaminação por partículas na fábrica.

Como a temperatura e a umidade do ar são controladas, a engenharia dos andares utiliza o próprio ar-condicionado para gerar um fluxo descendente, carregando pó e qualquer outro elemento estranho para o andar mais baixo do prédio, onde apenas serviços de manutenção são desempenhados.
Todo o material produzido é manuseado por máquinas. Robôs programados carregam os FOUP (Front Opening Unified Pod – cartucho unificado aberto pela frente) com as bolachas pelas diversas estações de fabricação, fazendo com que o trabalho humano seja principalmente de manutenção, acompanhamento e resolução de problemas.
Ensopado e churrasco
O processo de obtenção dos wafers é relativamente simples. Antes de tudo é necessário se obter silício – um dos principais componentes da areia. Obviamente determinados tipos de areia contêm um percentual maior de silício em sua composição, o que os torna ideais para a obtenção do material.Com a areia correta carregada, além de alguns outros elementos necessários para a obtenção das propriedades elétricas necessárias a um chip de computador, cria-se um melt ao derreter a mistura de areia e outras cargas.

Quando a barra de silício já tem tamanho suficiente, ela é retirada e levada para o corte. Os wafers são fatias transversais da barra cristalina, mais ou menos como um churrasqueiro faz com uma linguiça.
Da bolacha à lasca
Com o wafer recortado, o disco de cristal de silício passa por uma série de ajustes visando remover imperfeições e preparar a superfície para a impressão dos circuitos.
Essa impressão é feita de maneira semelhante a uma gravura, em um processo chamado fotolitografia. O desenho dos circuitos é criado em uma máscara – em um tamanho bem maior do que o do chip – e projetado através de lentes sobre as camadas que foram adicionadas depois do polimento.
Os locais onde a luz incide sobre o wafer são impressionados pela luz – não muito diferente do que acontece em uma fotografia – e tratados com agentes químicos para remover as partes indesejadas no circuito. Essa é a impressão dos caminhos dos elétrons.
Perceba que um wafer hoje considerado como estado da arte tem 300 mm de diâmetro – o próximo passo é aumentar essa medida para 450 mm – e chips de computador são muito menores do que isso. Cada disco recebe a impressão de vários chips, que serão posteriormente destacados e destinados às embalagens escuras que você encontra dentro da sua máquina.

Nem todos os dies são funcionais, entretanto. Contando o espaço de manipulação pelas máquinas, as áreas com informação de produção e falhas de impressão ou deposição de camadas, uma parcela de cada wafer é desperdiçada.
Como cada die não forma um circuito completo, esses bilhões de espaços tornam-se milhares – e em alguns casos apenas centenas – de chips. Depois de completado o processo de impressão, os chips são recortados do wafer e embalados em plástico para receber seu destino final.
Os chips criados por esse processo – como já foi dito antes – são utilizados tanto em processadores como em memória flash. O que diferencia um do outro são o tamanho final – chips de memória têm um formato padrão, o que não acontece com processadores – e o circuito impresso na etapa da fotolitografia .
O pessoal do PC Perspective colocou uma comparação interessante entre os tamanhos dos dois tipos de chip, que você confere nas fotos a seguir. Perceba que os chips de memória são bem menores que os de processadores (a moeda de quarter - à esquerda - tem aproximadamente o tamanho da moeda de 50 centavos brasileira, enquanto a de cent - à direita - tem o tamanho da nossa moeda de 1 centavo).


Saindo da fábrica

Dentro de cada computador, celular, MP3 player ou praticamente qualquer equipamento que você utiliza está – pelo menos – um desses componentes. Agora você já sabe toda a jornada que faz com que areia se torne um eletrônico refinado e de altíssima tecnologia.
0 comentários:
Postar um comentário